
Stephen Checkoway

Programming Abstractions
Lecture 3: Expression evaluation, conditionals, and equality

Expression evaluation

Expression evaluation

Scheme evaluates s-expressions to produce values

‣ The value of '() is '()

‣ The value of a variable is the value bound to it

- E.g., the variable null is bound to '()

‣ The value of an atom is the atom itself

‣ The value of a non-null list depends on the head of the list

- If the head is one of a specific set of symbols (e.g., define, lambda, λ, and

let), it's a special form. Each special form has its own way of being

evaluated

- Otherwise, it's procedure application

3

Procedure evaluation

(foo 1 2 #t) applies the procedure bound to the variable foo to the

arguments 1, 2, and #t

‣ (+ 1 2 3) — applies + to 1, 2, and 3, performing addition

‣ (* 5 (- x y) (/ z 8)) — computes 5(x - y)(z / 8)

‣ (list 32 5 8) — creates the list '(32 5 8)

‣ (list-ref (list 32 5 8) 2) — returns the element of '(32 5 8) at

index 2 namely 8

Note that (1 2 3) is invalid because 1 isn't a special form nor is it a procedure

4

Procedure evaluation order
(s-exp0 s-exp2 ... s-expn)

Scheme evaluates each of the s-expressions in turn

‣ s-exp0 must evaluate to a procedure value

‣ s-exp1 through s-expn are evaluated to produce values

‣ Then, the procedure is applied to the n arguments

(+ (* 2 3) 8)

‣ + evaluates to the addition procedure

‣ (* 2 3) is evaluated

- * evaluates to the multiplication procedure

- 2 and 3 evaluate to themselves

- multiplication procedure is applied to 2 and 3, producing 6

‣ 8 evaluates to itself

‣ addition procedure is applied to 6 and 8, producing 14
5

Using quote ' to prevent evaluation

(quote (1 2 3)) evaluates to the list (1 2 3)

'(1 2 3) is shorthand for this and is how DrRacket will display lists

'() is null and how DrRacket displays the empty list

We can quote identifiers (e.g., variable names) and use them as symbols rather

than the value the identifier is bound to (if any)

‣ 'red, 'green, 'blue, '+, 'list, etc

E.g., (+ 1 2) evaluates to 3, '(+ 1 2) evaluates to the list '(+ 1 2)

6

(define (p x y)

 (printf "x: ~v\ny: ~v\n" x y))

Procedure p prints out its two arguments. E.g., (p "foo" '(3 2)) prints 

x: "foo"  
y: '(3 2)

What does	 (p (+ 3 5)  
 (list (- 2 1) '(- 2 1))) print?

A. x: (+ 3 5)  
y: (list (- 2 1) '(- 2 1))

B. x: 8  
y: '((- 2 1) '(- 2 1))

C. x: 8  
y: '(1 1)

D. x: 8  
y: '(1 (- 2 1))

7

Conditionals

If expression
(if test-exp then-exp else-exp)

If test-exp evaluates to anything other than #f, then the whole expression

evaluates to the evaluation of then-exp

If test-exp evaluates to #f, then the whole if expression evaluates to the

evaluation of else-exp

Examples

‣ (if (= x y)  
 (+ x 2)  
 y)

‣ (if (empty? lst)  
 "The list is empty"  
 "The list is not empty")

9

Predicates

Racket has a bunch of procedures that return #t if its argument satisfies some

property

‣ (zero? x), (positive? x), (negative? x)

‣ (empty? x)	 returns #t if x is the empty list

‣ (list? x)	 returns #t if x is a list

‣ (number? x)	 returns #t if x is a number

‣ (pair? x)	 returns #t if x is a pair (including a nonempty list)

‣ (symbol? x)

‣ (string? x)

10

Conditional expressions
(cond [test-exp1 exp1] … [test-expn expn])

Evaluates the test-exp expressions in turn

The first one that evaluates to something other than #f has its corresponding

exp evaluated which becomes the value of the whole expression

We can use else as the last test expression

(cond [(zero? x) 0]  
 [(> x 0) 1]  
 [else -1])  

11

Some examples

(define (signum x)

 (cond [(zero? x) 0]

 [(> x 0) 1]

 [else -1]))

(define (length lst)

 (cond [(empty? lst) 0]

 [else (+ 1 (length (rest lst)))]))

12

Recursion!

There are no loops in Scheme; instead, we use recursion everywhere!

Common pattern when working with lists

(define (sum-positives lst)

 (cond [(empty? lst) 0] ; If lst is empty, return 0

 [(> (first lst) 0)

 (+ (first lst) (sum-positives (rest lst)))] ; recursion

 [else (sum-positives (rest lst))])) ; recursion

Note

‣ List functions empty?, first, rest

‣ Base case 0

‣ Recursive calls using the rest of the list, combined with the first element
13

What does this procedure do?

(define (foo lst)

 (cond [(empty? lst) #t]

 [(zero? (first lst)) #f]

 [else (foo (rest lst))]))

A. Returns #t if lst is empty and

#f otherwise

B. Returns #t if lst contains a 0

and #f otherwise

C. Returns #f if lst contains a 0

and #t otherwise

D. Runs forever because foo is

called on the rest of lst

14

(define (fun lst1 lst2)  
 (cond [(empty? lst1) lst2]  
 [else (cons (first lst1)  
 (fun (rest lst1) lst2))]))

What is the result of (fun '(1 2 3 4) '(a b c))?

A. '(1 2 3 4 a b c)

B. '(4 3 2 1 a b c)

C. '(1 2 3 4 c b a)

D. '(4 3 2 1 c b a)

E. '(a b c)

15

Equality

Scheme's equality operators
=, eq?, eqv?, and equal?

(= a b) — compares only numbers, cannot be used for anything else

(equal? a b) — compares structures recursively

‣ you almost always want this one and not either of the two below

(eq? a b) — compares if a and b refers to the same object in memory

‣ This can be used on symbols (eq? 'foo 'foo) returns #t, but is otherwise

not good

‣ (eq? 2.0 (+ 1.0 1.0)) can (and in DrRacket does) return #f!

(eqv? a b) — like eq? but also works with characters and numbers

17

Testing for equality
Moral

Are you dealing with numbers? Use =

Are you dealing with anything else? Use equal?

(You can use eq? or eqv? with symbols like (eq? sym 'foo) to determine if

the variable sym has as its value the symbol 'foo)

18

Let's write some Racket!

(remove-numbers lst) — Remove all of the numbers from lst

‣ (remove-numbers '(foo 3 5 (6 8))) => '(foo (6 8))

‣ We can use (number? x) to test if x is a number

(filter pred lst) — Takes a predicate (i.e., (pred x) returns #t or #f)

and a list and returns a list consisting only of the elements satisfying the

predicate

‣ (filter (λ (x) (> x 0)) '(1 2 -8 3 0 -4)) => '(1 2 3)

‣ (filter number? '(a 1 b 2 c 3)) => '(1 2 3)

19

